Heritable Remodeling of Yeast Multicellularity by an Environmentally Responsive Prion
نویسندگان
چکیده
Prion proteins undergo self-sustaining conformational conversions that heritably alter their activities. Many of these proteins operate at pivotal positions in determining how genotype is translated into phenotype. But the breadth of prion influences on biology and their evolutionary significance are just beginning to be explored. We report that a prion formed by the Mot3 transcription factor, [MOT3(+)], governs the acquisition of facultative multicellularity in the budding yeast Saccharomyces cerevisiae. The traits governed by [MOT3(+)] involved both gains and losses of Mot3 regulatory activity. [MOT3(+)]-dependent expression of FLO11, a major determinant of cell-cell adhesion, produced diverse lineage-specific multicellular phenotypes in response to nutrient deprivation. The prions themselves were induced by ethanol and eliminated by hypoxia-conditions that occur sequentially in the natural respiro-fermentative cycles of yeast populations. These data demonstrate that prions can act as environmentally responsive molecular determinants of multicellularity and contribute to the natural morphological diversity of budding yeast.
منابع مشابه
Yeast Model for Studying Heritable Mammalian Prion Disease
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are infectious fatal neurodegenerative disorders that include a variety of human diseases, such as CreutzfeldtJacob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru and fatal familial insomnia [1, 2]. Mammalian prion protein (PrP) in an abnormal aggregation-prone selfperpetuating (prion) conformation has been...
متن کاملPrions in yeast.
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has be...
متن کاملHeritable yeast prions have a highly organized three-dimensional architecture with interfiber structures.
Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein sy...
متن کامل[SWI+], the Prion Formed by the Chromatin Remodeling Factor Swi1, Is Highly Sensitive to Alterations in Hsp70 Chaperone System Activity
The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two o...
متن کاملHorizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles
UNLABELLED Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 153 شماره
صفحات -
تاریخ انتشار 2013